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COMMENT 

Multifurcations and sequence-dependent universal constants 

Viktor Urumov 
lnstitut za Fizika, Univerzitet 'Kiril i  Metodij' p. fah 162, Skopje 91001, Yugoslavia 

Received 23 February 1989 

Abstract. An infinite number of forward and  reverse n-furcations of tangent bifurcations 
of unimodal maps can be obtained from a simple substitutional rule. Besides the usual 
Feigenbaum-type universal constants, new numbers emerge that are  independent of the 
particular map,  but  for a given n depend on  the type of sequence under  consideration. 

Non-linear phenomena represent a subject of increased interest in recent years because 
of their extensive presence in different fields of natural sciences and  due  to successes 
both in the theoretical and  experimental efforts of their study. As a simplest model, 
which is also immensely fruitful, scientists frequently turn to one-dimensional maps 
x,+, =fu(x,)  of finite interval. Such maps exhibit many universal characteristics which 
are also typical in complex systems of higher dimensionality. Two collections of 
representative papers in the field were published recently, almost simultaneously 
(CvitanoviC 1984, Hao 1984). In the following we draw attention to some new, 
apparently universal, constants with the novel feature of their dependence on the 
particular sequence under examination. 

Consider the logistic mapping defined by 

fu (x )  = 1 - ax? 1x1 s 1 O s a s 2  (1) 
wheref,(x) has a quadratic maximum at x = 0. Depending on the value of the control 
parameter a, the iteration x,,, =fu(x,) displays periodic or chaotic behaviour. In  the 
domains of periodic behaviour, the increase of a gives rise to the well known period- 
doubling process (Feigenbaum 1978, 1979) characterised by universal constants. If 
{Gp2,$1}  describes a sequence with the property that at each GP2,,1, a p2" cycle bifurcates 
to a p2"+' cycle, the universal constant 6 satisfies 

The same limiting law holds for the so-called superstable values a, = ap2*,l defined 
by the condition 

f:;'""(o) = 0 (3)  
i.e. starting at x = 0 after p2" applications of the mapping f,,(x) one returns to the 
origin. Similar behaviour was found (Derrida et a1 1979) in the ordering of periodic 
windows borne by tangent bifurcations (Pomeau and  Manneville 1980). The n-furca- 
tion sequences of superstable values a,,,,~,, for cycles of period pn" with m = 0, 1, 2 , .  . . , 
for large m obey the asymptotic relationship 
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This is an equivalent form of the statement (2) .  Here the limit a,(L p ,  n )  and the 
amplitude A(f ,  p ,  n 1 depend on the particular sequence and on the function defining 
the mapping, whereas 6 is a universal constant determined only by the parameter n 
that defines the n-furcation process. 

The orbits belonging to the n-furcation sequence can be specified in terms of the 
*-composition law (Derrida er a1 1978) and the MSS sequences (Metropolis er a1 1973). 
Each superstable orbit in symbolic dynamics of MSS sequences is represented by a 
word which consists of letters L and R depending on whether successive iterates fall 
to the left or right of the critical point x, = 0. The initial and  final position x,, sometimes 
denoted by C (for centre) is usually understood and  omitted. The order in which the 
MSS sequences appear with the increase of the tuning parameter is universal, indepen- 
dent of the specific unimodal function defining the iteration process. For two admissible 
words P =  PIP2.. . Pp-, and  Q =  Q , Q z . .  . Qn- , ,  where P,, Q, = L ,  R; i =  1 , 2 , .  . . , p -  1, 
j = 1, 2 , .  . . , n - 1, the *-composition law is defined by 

P * Q = P r , P r 2 P  . . .  Pr,-,P (5) 

where 7, = Q, if P is an  even sequence and  7 # Q, in the opposite case. The sequence 
P is even (odd) if it contains a n  even (odd)  number of R characters. The n-furcation 
sequences mentioned previously are obtained from P * Q*", where Q*", Q * Q * . . . * Q 
means n - 1 applications of the composition law (P * Q*" = P for n = 0). All such 
sequences follow the direction of increase of the control parameter. 

In the following we consider the sequences defined by Q*" * P, m =0, 1, 2 , .  . . , 
which represent superstable cycles of period pn". As an example, in the case P = RL 
and Q = R ,  the first few terms in the sequence are 

RL, RLR3, RLR3LRLRLR, RLR'LRLRLR3LR3LR3LR,. . . . ( 6 )  

From this example it becomes evident that each subsequent term in the sequence 
can be obtained from the preceding one by the substitution 

R + R L  

L +  RR 
( 7 )  

and addition of an R a t  the end. Similar substitutional or inflation rules were considered 
by Procaccia er a1 (1987). In the more general case of n-furcations, the rules in which 
the Q * P composition law can be rephrased, read as follows: each R and L from P 
is replaced by 

and R +  QL} if Q is odd 
L-, Q R  

R +  QR} if Q is even 
L-, Q L  

and the sequence Q is added at the end. In other terms, R (L)  is substituted by an  
odd (even) sequence starting with 0, while at  the end one adds another Q. 

It is known (Metropolis et al 1973, Derrida et a2 1978) that for two arbitrary and 
different sequences A and B an ordering can be established. One says that 

A < B  (9) 

a < b. (10) 

if the corresponding superstable parameters satisfy 

Defining the order L < C < R on the letters, the criterion of Derrida et a1 (1978) 
determines the order between A and B as follows: there is always a least integer k for 
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which A,, # BA, then A < B if and only if A,, < Bk and A , A 2 . .  . Ak-, is even or Ak > Bk 
and A I A z . .  . Ak- ,  is odd. 

It is an  elementary exercise, having (9) and  using the reinterpretation of the 
composition law, to verify that 

Q * A < Q * B  (11) 

for any Q. For example if Q and A , A 2 . .  ~ are even and Ak = L, & = c and  
therefore Ak < B k  and A 4 B, the substitution rule for the first terms in A and B which 
differ from each other, gives Q L  < QC and correspondingly Q * A < Q * B. Similarly 
one can examine all other possible cases with the same result, thus establishing the 
order-preservation property of the composition law. 

All the sequences Q*" * P tend to the same limiting value a,(Q) independently 
of the initial sequence P. This follows from the fact that all sequences ( Q*") * P when 
m + M have an  increasing coincident part at the beginning which tends to an infinitely 
long word Q * x .  On the other hand the preservation of the order shows that if the 
initial sequence P is to the right (left) of Q*= the sequence Q*" * P approaches its 
limit from right (left). Thus for the superstable values of the cycles Q*m * P in the 
limit of large m we may write 

where - and + stand for forward and reverse (or 
value a,(f, Q )  depends on Q which defines the 

backward) sequences. The limiting 
n-furcations and  on the particular 

map f a ( x ) ,  but not on the initial sequence, whereas the universal constant 6 is a 
function of Q only. 

Investigation of sequences of this type was performed by Delbourgo and Kenny 
(1985) who found that they are governed by the same S ( Q )  as the forward n-furcation 
sequences P * Q*". They also found that there are different universal functions which 
arise from the n-furcation process Q*" * P that satisfy the same renormalisation group 
equation of Feigenbaum-CvitanoviC. Their study is limited to the reverse sequences 
which d o  not exhaust all the possible cases. 

In  connection with such sequences we present numerical evidence that the ratio 

is a universal constant in the sense that it is independent of the mapfa (x )  and which 
depends only on the type of n-furcation process defined by Q and on the initial 
sequence P. Here the fundamental forward sequence Q*" is used to set the scale 
A(f,  Q, Q) with which the other amplitudes A(f, P, Q )  are compared. Similar universal 
numbers, defined as ratios of amplitudes, were previously reported by Lorentz (1980) 
and Lutzky (1988). 

The results are displayed in table 1. The calculations were performed with two 
maps that are not conjugate to each other ( f , ( x )  = 1 - ax2 and ga,(x) = a'  cos( T X )  -0.5). 
In the numerical procedure we have used the method of Kaplan (1983) which directly 
determines the superstable orbits of desired type. After the initial calculations on a 
pocket programmable calculator, the numerical analysis was carried out with double 
precision in which the superstable parameters were found with an  accuracy of lo-'' 
and the number of bi- and  trifurcations was as high as 12 while for the quintufurcations 
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Table 1. The universal constant r for forward and reverse sequences of a given type. The 
accumulation points a,(a;) correspond to the functions/(x) = 1 - ax2 (g(x) = a' cos( T X )  - 
0.5). The three possible period-five sequences RLR', RL'R, RL' are denoted respectively 
by 5a, 56, 5c. The last column gives the exponent 6 for the multifurcation process (Chang 
and McCown 1984). 

Sequence 
Cycle Initial MSS defining the 
sequence sequence multifurcation r a,(aL) 6 

2" x 5a 
2 " x 3  
2" x 56 
2" x 4 
2" x 5c 

2 x 3" 
5a x 3" 
3 " x 5 6  
3" x 4  
3" x 5c 

5a" x 56 
5a" x 5c 

5a x 56" 
56" x 5c 

5a x 5c" 
56 x 5c" 

RLR: 

RL'R 
R L~ 

R L  

R L' 

R 
RLR' 
RL'R 
RL' 
RL' 

RL'R 
R L~ 

RLR' 

R L R ~  
R L ~ R  

RL' 

R 
R 
R 
R 
R 

RL 
RL 
RL 
RL 
RL 

R L R ~  
RLR' 

R L ~ R  
RL'R 

RL' 
RL' 

0.496 568 1.401 155 189 4.6692 
0.802 632 (0.865 578 869) 
1.067 96 
1.272 36 
1.413 48 

23.693 1.786 440 255 55.247 
4.924 6 (0.946975 311) 
2.272 6 
4.765 0 
6.235 1 

35.029 1.63 1 926 654 255.55 
53.989 

163.43 1.862 224 022 1287.1 
85.365 

3070 1.985 539 530 16931 
1060 

we limited ourselves to 6 steps. It is evident from the data that the constant r increases 
with the distance of the starting sequence P from the accumulation point. 

In conclusion, the forward and reverse n-furcation sequences Q*"' * P that were 
considered, have unique accumulation point that depends on 0. Further, the ratio of 
amplitudes is apparently another universal constant which is independent of the 
particular mapping. One may suppose that similar properties characterise unimodal 
maps with non-quadratic behaviour 1x1' in the vicinity of the critical point, in which 
case r becomes a function of z. Two obvious questions remain. Are there any other 
substitutional rules which lead to some n-furcation sequences? How one can extract 
the constant r from the renormalisation group equation? 

Acknowledgment 

I am grateful to Professor Delbourgo for sending me his paper and to the Institute of 
Earthquake Engineering and Seismology in Skopje for the free access to their computing 
facilities. 

References 

Chang S-J and McCown J 1984 fhys .  Ret .  A 30 1149 
CvitanoviC P 1984 Unioersaliry in Chaos (Bristol: Adam Hilger) 
Delbourgo R and Kenny B G 1985 Aust. J .  Ph!,s. 38 1 
Derrida B, Gervois A and Pomeau Y 1978 Ann. Ins( .  Henri fo incar i  29A 305 



Multifurcations and sequence-dependent universal constants 

- 1979 J. fhys.  A: Marh. Gen. 12 269 
Hao B-L 1984 Chaos (Singapore: World Scientific) 
Feigenbaum M J 1978 J.  Star. fhys. 19 25 
- 1979 J.  Srar. f h y s .  21 669 
Kapian H 1983 Phys. Lerr. 97A 365 
Lorenz E N 1980 Ann. N Y  Acad. Sci. 357 282 
Lutzky M 1988 f h y s .  Lerr. l28A 332 
Metropolis N,  Stein M L and Stein P R 1973 J. Comb. 7heory I5 25 
Pomeau Y and Manneville P 1980 Commun. Marh. fhys .  74 189 
Procaccia I ,  Thomae S and Tresser C 1987 Phys. Rev. A35 1884 

2875 


